CHARTER ACADEMY
A PACIFIC CHARTER INSTITUTE SCHOOL

Mathematics Arts State Standards

Grade 6

Standards for Mathematical Practice - "HOW" My student can:

\square make sense of problems, persevere in solving them, and check the reasonableness of answers.
\square reason with and flexibly use math symbols, numbers, and operations.
\square construct mathematical arguments (using stated assumptions, definitions, previously established results, and logical
\square progressions) and critique the math reasoning of others.
\square recognize math in everyday life and use math to solve real problems.
\square use tools (e.g., protractor, calculator) strategically to solve problems and deepen understanding.
\square calculate accurately, use precise math definitions and vocabulary, and express math ideas clearly.
\square look for and make use of patterns and structure in math.
\square discern when calculations are repeated and look both for general methods and for shortcuts.

Math Content Standards - "WHAT" Ratios and Proportional Relationships My student can:

\square understand ratios and use ratio language to describe the relationship between two amounts. 6.RP. 1
\square understand how to find a rate when given a specific ratio. For example, "We paid $\$ 75$ for 15 hamburgers, which is a rate
\square of $\$ 5$ per hamburger. 6.RP. 2
solve real-world and mathematical word problems related to ratios and rates.
6.RP. 3
\square make tables of equivalent ratios, find missing values in the tables, plot those values on a coordinate plane, and use the
\square tables to compare ratios. 6.RP.3a
\square solve unit rate problems including unit pricing \& constant speed (e.g., If it took 7 hours to mow 4 lawns, then at that
\square rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?). 6.RP.3b
\square find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity). 6.RP.3c
\square solve problems to find the whole, given a part and the percent. 6.RP.3c
\square use what is known about ratios to convert/manipulate units of measurement when multiplying \& dividing. 6.RP.3d

The Number System

My student can:

divide two fractions; solve word problems involving the division of fractions by fractions. 6.NS. 1
\square quickly and easily divide multi-digit numbers. 6.NS. 2
fluently add, subtract, multiply and divide multi-digit numbers involving decimals. 6.NS. 3
\square find the greatest common factor of two whole numbers less than or equal to 100. 6.NS. 4
\square find the least common multiple of two whole numbers less than or equal to 12 . 6.NS. 4
\square use the distributive property to show the sum of two whole numbers 1-100 with a common factor as a multiple of a
\square sum. For example, show $36+8$ as 4 (9+2). 6.NS. 4
\square understand that positive \& negative numbers are used to describe amounts having opposite values or directions. 6.NS. 5
\square use positive and negative numbers to represent amounts in real-world situations; explain the meaning of 0 in each
\square situation. 6.NS. 5
\square understand that a rational number is a point on a number line. 6.NS.6
\square extend number line diagrams and axes to show positive and negative numbers on the line and in the plane. 6.NS.6
\square recognize opposite signs of numbers as showing points on opposite sides of 0 on the number line. 6.NS.6a
\square understand signs of numbers in ordered pairs as showing locations in quadrants of the coordinate plane; recognize that
\square when two ordered pairs differ only by signs, the points are related by reflections across one or both axes. 6.NS.6b
\square place integers and other rational numbers on a horizontal or vertical number line diagram. 6.NS.6C
\square place ordered pairs of integers on a coordinate plane. 6.NS.6c
\square order positive and negative numbers; understand absolute value of rational numbers. 6.NS. 7
\square interpret statements of inequality as statements about the relative position of two numbers (positive or negative) on a
\square number line (e.g., interpret $-3>-7$ to mean that -3 is located to the right of -7 on a horizontal number line). 6.NS.7a
\square write and explain statements that show the order of rational numbers in realworld situations (e.g., write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to
\square show that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$). 6.NS. 7 b
\square understand the absolute value of a rational number as the number's distance from 0 on the number line. 6.NS.7c
\square understand absolute values as they apply to real-world situations (e.g., for an account balance of -30 dollars, write
$\square|-30|=30$ to describe the size of the debt in dollars). 6.NC.7c
\square tell the difference between comparing absolute values and ordering positive and negative numbers. 6.NS.7d
\square graph in all four quadrants of the coordinate plane to help solve real-world and mathematical problems. 6.NS.8
\square find the distance between points with the same first coordinate or the same second coordinate. 6.NS.8

Expressions and Fractions

My student can:

\square write and understand numerical expressions involving whole-number exponents. 6.EE. 1
\square write, read and evaluate expressions in which letters stand for numbers (e.g., express "subtract y from 5" as 5-y). 6.EE. 2
\square identify the parts of an expression using mathematical words (sum, term, product, factor, quotient, coefficient). 6.EE.2b
\square view one or more parts of an expression as a single unit (e.g., describe 2(8+7) as a product of two factors; view ($8+7$)
\square as a sum of two terms or as the single quantity 15). 6.EE.2b
\square determine the answer to expressions when given the specific value of a variable. 6.EE.2c
\square use "order of operations" to solve problems in the conventional order when there are no parentheses. 6.EE.2c
\square use properties of operations to create equivalent expressions (e.g., apply properties to $y+y+y$ to produce $3 y$). 6.EE. 3
\square identify when two expressions are equivalent (e.g., when two expressions name the same number regardless of the
\square value substituted for the letter: $y+y+y=3 y$ or $3(2+x)=6+3 x)$. 6.EE. 4
\square understand that solving an equation or inequality is like answering a question: which values makes the equation or
\square inequality true? Use substitution to determine whether a given number makes an equation or inequality true. 6.EE. 5
\square use variables to represent numbers and write expressions when solving realworld problems. 6.EE. 6
\square understand that a variable can represent an unknown number or a number in a specified set. 6.EE. 6
\square write and solve equations in the form $\mathrm{x}+\mathrm{p}=\mathrm{q}$ and $\mathrm{px}=\mathrm{q}$ when p, q, and x are all nonnegative rational numbers. 6.EE.7
\square write an inequality in the form $x>c$ or $x<c$; represent the infinite solutions of these inequalities on a number line. 6.EE.8
\square write an equation to express one quantity, the dependent variable, in terms of the other quantity, the independent
\square variable (e.g., write $\mathrm{d}=65 \mathrm{t}$ to represent the relationship between distance and time). 6.EE. 9
\square use graphs and tables to show the relationship between dependent and independent variables. 6.EE. 9

Geometry

My student can:

\square put together and take apart shapes to find the area of right triangles, other triangles, special quadrilaterals, and
\square polygons; apply these techniques to solve real-world and mathematical problems. 6.G. 1
\square use unit cubes to find the volume of a right rectangular prism with fractional edge lengths; show that the volume is the
\square same as found by multiplying the edge lengths of the prism. 6.G.2
\square use the formulas $V=1 \mathrm{wh}$ or $V=\mathrm{b} h$ to find volumes of right rectangular prisms in real-world problems. 6.G.2
\square draw polygons in the coordinate plane when given the coordinates for the vertices. 6.G. 3
\square use coordinates to find the length of a polygon's side in a coordinate plane. 6.G. 3
\square show how three-dimensional figures can be represented with two- dimensional nets (a net is the pattern made when the
\square surface of a three-dimensional figure is laid out flat) made of rectangles and triangles. 6.G. 4
\square figure out the surface area of 3-D shapes by using nets; apply this technique to real-world \& math problems. 6.G. 4

Statistics and Probability

My student can:

\square understand that a statistical question expects responses/data to be varied (e.g., "How old are the students at the
\square school?" is a statistical question because one anticipates variation in students' ages). 6.SP. 1
\square understand that a set of statistical data has a distribution that can be described by its center, spread, \& shape. 6.SP. 2
\square understand that a set of numerical data has a "measure of center" (median and/or mode) that summarizes all of its
\square values with one number. 6.SP. 3
\square understand that the measure of variation in a set of data describes with one number how values vary. 6.SP. 3
\square show numerical data in plots on a number line, including dot plots, histograms, and boxplots. 6.SP. 4
\square summarize numerical data sets by reporting the number of observations. 6.SP.5a
\square summarize data by describing the attribute under investigation, including how it was measured. 6.SP.5b
\square summarize data by giving numerical measures of center and variability as well as describing overall pattern. 6.SP.5c
\square describe deviations from the overall pattern of a data set, referring to the context of data collection. 6.SP.5c
\square describe the relationship between the measures of center \& variability and the shape of the data distribution. 6.SP.5.d

